

Fluorinar-H™ Kynar® PVDF Filament

3D printing is an exciting addivie manufacturing method. However, available filament materials for engineers and chemists lack the corrosion resistance required for many industrial applications. With Fluorinar-H™ Kynar® PVDF filament reality has changed. Advantages of Fluorinar-H™ filament include:

- » Rapid part production in small quantities
- » Production of solid stock for CNC machining when tight part tolerances are required

- » Easy to print filament settings can be achieved on most consumer-grade printers
- » Wide melt window means no outgassing during part production
- » Final parts are corrosion resistant and can be exposed to a wide range of chemicals
- » Withstand UV and ionizing radiation without mechanical compromise

Fluorinar-H™ filament is made from 100% PVDF without processing aids, stabilizers, colorant or fillers.

Fluorinar-H™ Kynar® PVDF Print Settings							
Print Quality	Filament Material	Color	Brim	Extrusion Temp (C)	Bed Temp (C)	Print Speed (mm/sec)	Layer Height (mm)
Standard	Fluorinar-H™	Natural	Yes	240 - 250	100	50	0.20
High	Fluorinar-H™	Natural	Yes	240 - 250	100	30	0.10

Fluorinar-H™ Kynar® PVDF Filament Properties						
Part Number	Materials	Color	Filament Diameter (mm)	Diameter Tolerance (mm)	Filament Spool Weight (g)	USP Class VI
NPFH175N500	Kynar PVDF	Natural	1.75	+/- 0.05	500	Yes
NPFH285N500	Kynar PVDF	Natural	2.85	+/- 0.05	500	Yes

Fluorinar-H™ Material Properties					
Physical Properties	Standards	Units	Results		
Refractive Index	ASTM D542	-	1.42		
Specific Gravity	ASTM D742	-	1.77 - 1.79		
Water Absorption	ASTM D570	%	0.01 - 0.03		
Mechanical Properties					
Flexural Strength at 5% Strain	ASTM D790	psi	8,500 - 11,000		
Flexural Modulus	ASTM D790	psi	200,000 - 335,000		
Tensile Yield Elongation	ASTM D638	%	5 - 10		
Tensile Yield Strength	ASTM D638	psi	6,500 - 8,000		
Tensile Break Elongation	ASTM D638	%	20 - 100		
Tensile Break Strength	ASTM D638	psi	5,000 - 8,000		
Tensile Modulus	ASTM D638	psi	200,000 - 335,000		
Deflection Temperature	ASTM D648 at 66 psi	°F	221 - 239		
Hardness	ASTM D2240	Shore D	76 - 80		
Thermal Properties					
Melting Temperature	ASTM D3418	°F	329 - 342		
Thermal Conductivity	ASTM D433	BTU-in/hr.ft ² F	1.18 - 1.32		
Electrical Properties					
Dielectric Strength	ASTM D149	KV/mil	1.7		
Volume Resistivity	ASTM D257	ohm-cm	2 x 10 ¹⁴		
Flame and Smoke Properties					
Burning Rate	UL/Bulletin 94	-	V - O		
Limiting Oxygen Index	ASTM D2868	% O ₂	44-75		

Fluorinar-H™ Chemical Resistance					
Chemical	Concentration	Maximum Temperature °F			
Acetic Acid	50% in water	200			
Acetone		Not Recommended			
Brine		285			
Bromine, liquid		150			
Chlorine, liquid		200			
Chromic Acid	Up to 40% in water	175			
Hydrochloric Acid	Up to "concentrated"	285			
Hydrofluoric Acid	41 - 100%	200			
Nitric Acid	11 - 70% in water	125			
Phosphoric Acid	Less than 85% in water	275			
Sulfuric Acid	Up to 60% in water	250			

Fluorinar-H™ Kynar® PVDF Filament is manufactured in the USA by Nile Polymers, Inc. Contact us at (801) 203-3756 or sales@nilepolymers.com

The statements, technical information and recommendations are believed to be accurate. Since the conditions and methods of use of the product and of the information referred to are beyond our control, Nile Polymers expressly disclaims any and all liability as to any results obtained or arising from any use of the product or reliance on such information; NO WARRANTY OF FITNESS FOR ANY PARTICULAR PURPOSE, WARRANTY OF MERCHANTABILITY OR ANY OTHER WARRANTY, EXPRESS OR IMPLIED, IS MADE CONCERNING THE GOODS DESCRIBED OR THE INFORMATION PROVIDED HEREIN. The information provided herein relates only to the specific product designated and may not be applicable when such product is used in combination with other materials or in any process. The user should thoroughly test any application before commercialization.